OUP user menu

Arrhythmias

Back to Cardio Image Bank

 

Transmural ablation of all the pulmonary veins: Is it the Holy Grail for atrial fibrillation cure? - Figure 1

Eur. Heart J. (2010), 31 (22), 2708-2711; 10.1093/eurheartj/ehq241 - Click here to view abstract

Schematic of the anatomo-functional arrhythmic mechanism and common ablation strategies in paroxysmal and long-standing/persistent AF. (A) Active triggers arising from the atrial myocardium within the PVs and other thoracic veins (CS, vein/ligament of Marshall, and the SVC) are shown in green. Autonomic ganglia and nerves are shown in yellow. Abrupt changes of fibre orientation along the PV antrum and posterior LA wall favouring anatomic re-entry or high frequency rotors are also shown. (B) The two most common approaches for paroxysmal AF: segmental PV isolation for electric disconnection of triggers within the veins; and circumferential ostial PV isolation (one-by-one linear ablation of the PVs). (C) Simultaneous isolation of the ipsilateral PVs, encircling the antrum and additional linear lesions between the superior and inferior PVs. (D) Combinations of more than two techniques are usually necessary for a successful outcome in long-standing or persistent AF. These approaches include (i) PV isolation; (ii) isolation of the thoracic veins and non-PV triggers; (iii) additional linear lesions such as the ‘mitral isthmus’ line connecting the mitral valve and the lesion encircling the LIPV, a ‘roof’ line connecting the lesions encircling the left and right PVs, a ‘right atrial isthmus’ line, and an ‘anterior’ line connecting the roof line to the mitral annulus anteriorly; (iv) ablation of complex fractionated activity; and (v) ablation of autonomic plexuses. CS, coronary sinus; LAA, left atrial appendage; LIPV, left inferior PV; LSPV, left superior PV; RIPV, right inferior PV; RSPV, right superior PV; SVC, superior vena cava.

 

Tilt testing and neurally mediated syncope: too many protocols for one condition or specific protocols for different situations? - Figure 1

Eur. Heart J. (2009), 30 (18), 2174-2176; 10.1093/eurheartj/ehp290 - Click here to view the abstract

This figure shows very schematically the different possible afferent pathways of neurally mediated syncope and how tilt testing and the different drugs can act on these different triggers. Tilt testing and nitroglycerin provoke central hypovolaemia by increasing venous pooling; isoproterenol, increases the adrenergic nerve tone, as happens in those cases triggered by fear or pain; clomipramine enhances central serotonergic activity as probably happens in some syncopal centrally induced syncopal episodes.

 

Psychosis, depression, and high risk for sudden cardiac death: time for co-operation between psychiatrists and cardiologists - Figure 1

Eur. Heart J. (2011) 33 (6), 687; 10.1093/eurheartj/ehr405 - Click here to view the abstract

The triangle of sudden death in psychiatric patients.

 

Risk stratification for sudden cardiac death: current status and challenges for the future - Figure 1

Eur Heart J (2014) 35 (25): 1642-1651; 10.1093/eurheartj/ehu176 - Click here to view the abstract

Illustration of the potential impact on outcome (survival vs. sudden death) of the interaction between two arrhythmogenic substrates (acute myocardial infarction or heart failure, and mutations causing arrhythmogenic diseases) and predominantly protecting or damaging clusters of common genetic variants (SNPs). As the cluster of SNPs of a given individual reflects the inheritance by the parents, this interaction is clearly governed by chance.

 

Novel mechanisms in the pathogenesis of atrial fibrillation: practical applications

Eur. Heart J. (2015), Fig 3; 10.1093/eurheartj/ehv375 - click here to view abstract

Individualized mechanistic-based atrial fibrillation management. Various non-invasive substrate based atrial mapping can help to improve phenotyping of AF patients. These may include: (A) atrial pericardial adipose tissue assessment using CMR from Mahajan et al.60; (B) atrial fibrosis detection using LGE-CMR from Daccarett et al.46; (C) non-invasive mapping of AF rotors from Haissaguerre et al.130; (D) assessment of pro-coagulation state; (E) assessment of sympathetic tone from measurement of subcutaneous nerve activity from Robinson et al.123

 

Another jigsaw piece in the complex picture of hormonal regulation of cardiac repolarization

Eur. Heart J. (),  (), -, Fig 1; 10.1093/eurheartj/ehv475 - click here to view abstract

Oestradiol effects on cardiac ion channels/currents and action potential duration. Illustration of oestradiol effects on KCNH2/HERG (IKr) and Cav1.2α channels (ICa,L) that are mediated either via oestradiol receptors or in a receptor-independent manner (information based on1,6,12,13). Consecutive changes in action potential duration (APD) are depicted in insets. E2, oestradiol; E2 receptor, oestradiol receptor α; HRE, hormone responsive element; Hsp90, heat-shock protein 90; ICa,L, L-type Ca2+ current; IK1, inward rectifier current; IKr, rapid delayed rectifier K+ current; IKs, slow delayed rectifier K+ current; INa, depolarizing Na+ current; Ito, transient outward K+ current; +, increase; –, decrease/blockade; →, prolongation of APD; ←, shortening of APD.

 

Back to Cardio Image Bank