
Review

High heart rate: a cardiovascular risk factor?
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De battre mon coeur s’est arrêté—Movie by Jacques Audiard.

Resting heart rate (RHR) is one of the simplest cardio-
vascular parameters, which usually averages 60 to 80
beats per minute (b.p.m.), but can occasionally exceed
100 b.p.m. in unconditioned, sedentary individuals and be
as low as 30 b.p.m. in highly trained endurance athletes.
Epidemiological evidences demonstrate that RHR, or its
corollaries, namely post-exercise heart rate recovery,
which is mediated primarily by vagal tone, and heart rate
variability (HRV, beat-to-beat variability also mediated by
autonomic nervous system, especially parasympathetic)
correlates with cardiovascular morbidity and suggests that
RHR determines life expectancy. Multiple studies have
identified RHR as an independent risk factor for cardio-
vascular disease (comparable with smoking, dyslipidemia
or hypertension). However, it is often overlooked.

Heart rate: an independent cardiovascular
risk factor

Since 1980, it is known that resting heart rate (RHR) is a
prognostic factor in coronary diseased patients.1,2 Data
from the Coronary Artery Surgery Study (CASS) published
last year underline the prognostic importance of RHR for
morbidity (time to rehospitalization), as well as total and
cardiovascular mortality.3 Heart rate proves to be the best
predictor after myocardial infarction,4,5 in patients with
congestive heart failure, as well as in patients with diabetes
mellitus or hypertension.
In addition, it was found that elevated RHR is also strongly

associated with mortality in the general population. For
instance, in the Framingham Study, in a cohort composed of
5070 subjects who were free from cardiovascular disease at
the time of entry into the study, cardiovascular and coronary
mortality increased progressively with RHR6 (Figure 1). In a
subset of 4530 untreated hypertensive (.140 mmHg systolic
or.90 mmHg diastolic) patients included in this study, using
36-year follow-up data, odds ratio (OR) for each increment in
heart rate of 40 b.p.m. were 1.68–1.70 (CI: 1.08–2.67) for
cardiovascular mortality and fascinatingly also 2.14–2.18
(CI: 1.59–2.88) for all-cause mortality. This latter study,
however, also underlines a key concept: because high RHR
is associated with elevated sympathetic activity, it is also

frequently related to arterial hypertension. A crucial step is
therefore to know whether high RHR is also associated with
cardiovascular mortality when controlling for potential
confounding cardiovascular risk factors, such as arterial
hypertension or age.7 Subsequent analysis demonstrated
that rapid RHR was not an indicator of pre-existing illness,
but was rather an independent risk factor.8 Moreover, four
studies involving hypertensive subjects demonstrated that
this effect was sustained in this subset of patients.7–11 This
abundant literature was further incremented by data also
demonstrating this effect in elderly.12–14

Multiple follow-up studies confirmed these data, as the
Cordis trial, the Paris Prospective Study or the MATISS
project: Kristal-Boneh et al. (CORDIS)15 found that RHR
was strongly associated with both all-cause (RR: 2.23,
CI: 1.4–3.6, RHR .90 vs. ,70 b.p.m.) and cardiovascular
mortality after controlling (in various statistical models) for
manifold recognized risk factors. Filipovsky et al. (PPS)16

found that mortality could be predicted by resting heart fre-
quency in 4907 middle-aged males followed during 17 years.
Seccareccia et al. (MATISS)17 verified that in a low-risk Italian
population, heart rate increment was associated with a
relative risk increase from 1.52 (CI: 1.29–1.78) for all-cause
mortality, 1.63 (CI: 1.26–2.10) for cardiovascular mortality,
and 1.47 (CI:1.19–1.80) for non-cardiovascular mortality.
As with cholesterol levels, the risk is graded;9,18 i.e. the

risk rises with increasing RHR. In the French IPC trial,
Benetos et al.9 evaluated the prognostic value of RHR on
mortality in more than 19 000 healthy subjects and found a
continuous, graded effect of RHR during a mean follow-up
duration of 18.2 years. In men, the relative risk for cardiovas-
cular death was 1.35 (CI: 1.01–1.80) in the group with RHR
60–80 b.p.m. to 2.18 (CI: 1.37–3.47) in the group with RHR
.100 b.p.m. Data from the National Health and Nutrition
Examination Survey (NHANES I) Epidemiologic follow-up
study confirmed this association in white men (RR: 1.37,
CI: 1.02–1.84, RHR .84 vs. ,74 b.p.m.) and extended this
observation to black men and women.19 This is an important
finding because it has been considered that high RHRwas only
a weak predictor in the female gender. The key studies on the
topic are listed on the Table 1.13,20–27

On the basis of this evidence, it has been proposed that,
as in animals, life span could be predetermined using
allometric scales based on RHR.28 Longevity determination
is a key element in biogerontology. Within the animal
kingdom, the mammalians’ heart rate represents an
inverse semi-logarithmic relation to life expectancy: small
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animals have a higher heart rate and shorter lifespan than
do larger28–30 (Figure 2). The average number of heart
beats per lifetime in mammalians is unexpectedly constant
within one order of magnitude, 7.3þ /25.6 � 108 despite
a .40-fold difference in longevity (Figure 3). As a corol-
lary, the basal energy consumption per heart beat and
heart mass may be the same for all animals. This suggests
that the life span is predetermined by the basic energetics
of the living cells, and that the apparent inverse relation
between life span and heart rate reveals the heart rate
to serve as a marker of the metabolic rate. This may be
exemplified by considering the vast range of physiological
cardiac parameters between one of the smallest, the
shrew weighing 2 g, and the largest extant mammalian,
the blue whale of 100 000 kg (Table 2 with data compiled
from Dobson31). Despite a difference of many millions in
body weight, heart weight, stroke volume, and total
blood pumped per lifetime, the total oxygen consumption
and ATP usage per unit mass and lifetime are almost iden-
tical together with the total number of the heart beats per
lifetime.
Only humans make an exception to the rule by living

longer and thus accumulating a larger mean number of
heart beats of around 30 � 108 per lifetime (Figure 3).
One might speculate how modern humans have stretched
the biological boundaries by pushing the life expectancy to
80 years and beyond. The most likely explanations may be
changes in life-style, drugs (in particular, antibiotics), pre-
vention, and nutrition.28 However, the question should still

be raised: does the RHR causally determine the life span,
or is it only an epiphenomenon?

High RHR: genetics vs. environmental factors?

The last decade has witnessed key discoveries on mecha-
nisms leading to isolated high RHR. Singh et al.32 highlighted

Figure 1 Dependency of heart failure events and sudden cardiac death on
RHR divided in quartiles or quintiles. Included are men in a 36-year follow-up
in the Framingham Heart Study.6,8

Table 1 Main studies on high RHR as cardiovascular risk factor

Reference Study
population
subset(s)

Study name Year

CAD
Wong et al.20 Framingham 1989
Disegni et al.4 SPRINT 1995
Copie et al.1 1996
Hathaway et al.5 GUSTO-I 1998
Diaz et al.3 CASS 2005

General population
Dyer et al.2 Chicago 1980
Kannel et al.6 Framingham 1985–87
Gillum et al.19 NHANES I 1991
Filipovsky et al.16 Paris

Prospective
1992

Shaper et al.21 British
Men Study

1993

Goldberg et al.22 Framingham 1996
Benetos et al.9 French IPC 1999
Jouven et al.23 Paris

Prospective
1999

Kristal-Boneh et al.15 CORDIS 2000
Seccareccia et al.17 MATISS 2001

Hypertensive individuals
Benetos et al.9 French IPC 1999
Gillmann et al.8 Framingham 1993
Thomas et al.10 French IPC 2001

Female gender
Perk et al.25 Jerusalem

70-year-old
Longitudinal
Study

2003

Diaz et al.3 þCAD CASS 2005
Diaz et al.3 þdiabetes CASS 2005
Chang et al.26 þelderly Women’s

Health
and Aging
Study
I (WHAS I)

2003

Gillman et al.8 þarterial
hypertension

Framingham 1993

Palatini et al.11 þelderly
þarterial
hypertension

Syst-Eur 2002

Elderly
Aronow et al.27 1996
Palatini et al.14 CASTEL 1999
Menotti et al.13 FINE 2001
Benetos et al.12 French IPC 2003
Palatini et al.11 þarterial

hypertension
Syst-Eur 2002
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the contribution of genetic factors as a substantial determi-
nant of RHR. Heritability analyses have been done by study-
ing correlations between siblings and between spouse pairs
after adjusting for important covariates within the
Framingham Heart Study. They estimated the heritability
of RHR to be 21%, which was similar to the subsequent
report by Martin et al.’s33 estimate of 26%. Using a candi-
date gene approach for looking at the genetic determination
of RHR, Ranade et al.34 found a ser49-to-gly (S49G) poly-
morphism in the beta-1 adrenergic receptor (ADRB1)
associated with RHR. Serine homozygotes subjects had the
highest mean RHR. A finding, which was supported by
results from a genome scan study by Wilk for quantitative
trait loci influencing RHR in about 1000 Caucasians and
1000 African Americans. Wilk et al.35 (Hypertension
Genetic Epidemiology Network-HyperGEN) also demon-
strated that the highest logarithm of the odds (LOD) score
was detected on chromosome 4. Further investigations
by Martin et al.33 from the Metabolic Risk Complications of
Obesity Genes project, obtained significant evidence of
linkage (LOD ¼ 3.9) for RHR on chromosome 4q, in the
same region as for long QT syndrome 4 and within the
1-LOD unit support interval of two candidates: ankyrin-B
and myozenin.
So is it only genetics? The response is clearly NO. Singh

et al.32 demonstrated (apart from the genetic factors)
that environmental causes (body mass index, systolic and
diastolic blood pressure, smoking, and alcohol consumption)

play at least such a large role in the determination of the
RHR/HRV (13–40% vs. 13–23%). Martin et al.33 observed
that individuals (especially females) with elevated RHR
exhibited significantly elevated insulin and glucose levels,
waist circumference, BMI, and diastolic blood pressure and
suggestively elevated triglyceride levels and systolic blood
pressure, all different clusters from the well known insulin
resistance syndrome.36,37 The question is, therefore,
whether high RHR also represents a member of this family.
In line with these findings, recent studies have contributed
importantly to generate the new concept that a defect in
‘bioavailability’ of nitric oxide (NO) plays a central role in
the pathogenesis of this disorder. Interestingly, NO has
been implicated in autonomic regulation of various aspects
of cardiovascular system and could, thus, be the missing
link between metabolic syndrome and high RHR (for
review, see Sartori et al.38). In the coronary arteries, NO
participates in parasympathetic vasodilation39 and inhibition
of its sympathetic vasoconstriction.40 NO also modulates
myocardial contractility in response to both cholinergic41,42

and beta-adrenergic stimulation.43 More importantly, NO is
considered to modulate the autonomic control of heart
rate, and, thus, RHR. Studies in humans suggest that NO aug-
ments cardiac vagal control in healthy subjects, as well as in
patients with heart failure.44 Studies in animals established
that this effect was mediated by the neuronal isoform of NO
synthase (nNOS): mice (intact animals or isolated atria
harvested from such animals) with complete deletion of

Figure 3 Relation between life expectancy and total heart beats per life-
time in mammals and humans. Redrawn from Levine28 with permission from
American College of Cardiology Foundation.

Figure 2 Inverse linear relation between RHR and life expectancy in
mammals and humans. Redrawn from Levine28 with permission from
American College of Cardiology Foundation.

Table 2 Cardiac parameters of one of the smallest and one of
the largest living mammalians

Parameter Shrew Blue whale Fold
difference

Body weight 2 g 100 000 kg 50 000 000
Heart weight 12 mg 600 kg 50 000 000
Heart weight

over body
weight

0.006 0.006 1.0

Heart rate
per minute

1000 6 170

Life span (years) 1 118 118
Heart beats

per lifetime
6.6 � 108 11 � 108 1.7

Stroke volume
(litres)

1.2 � 1026 350 300 000 000

Cardiac output
(litres per min)

0.001 2098 2 200 000

Total blood
pumped
per lifetime
(litres)

800 1.3 � 1011 163 000 000

Blood pumped
(litres)
per lifetime
per kg heart

6.7 � 107 22 � 107 3.3

Total oxygen
consumption
(litres per
kg per lifetime)

35 000 39 300 1.1

Moles ATP per kg
per lifetime

7813 8771 1.1

Data of column one and two were collected from Dobson.31
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the gene display impairment in the parasympathetic control
of heart rate.45,46 So, is high RHR an epiphenomenon of the
same spectrum of disease, yet known as metabolic syn-
drome?47 The answer is probably affirmative.
Because virtually all widespread ‘common’ diseases, such

as diabetes or hypertension, result from the complex inter-
action of genetic susceptibility factors and modifiable
environmental factors, one should postulate that this is
also the case for the pathogenesis of elevated RHR. In line
with this concept, animals fed with high-fat diet (unfortu-
nately a not-so-infrequent diet in humans) rapidly develop
a loss of nocturnal dipping of both blood pressure and
heart rate48,49 and then all the pattern of metabolic syn-
drome. This effect is exaggerated in animal with NO
deficiency,36,37,50 but could also happen with other gene
deficiency, as demonstrated by PPARg conditional E-null
mice.51

HR-lowering therapy on the myth
of eternal youth

If heart rate conditioned the fate of basal energy consump-
tion and that the total energy per life is predetermined, life
span should depend on heart rate (as in everyday chassis
battery): average (battery) life has become shorter as
energy requirements have increased. Taking advantage of
this theory, techniques aiming to lower RHR should increase
the life span. In wildness, hibernation acts in this way:
hibernation markedly lowers RHR and prolongs life. For
example, hibernating bats’ heart rate decrease by 45-fold
to 10–20 b.p.m. Hibernating bats live 70% longer (39 vs. 23
years) than its non-hibernating counterparts.52 In humans,
modification of coronary heart disease risk factors play a
key role in the control and alteration of the atherosclerotic
process. Because hibernation is hardly possible (although
some failed attempts have been reported53), we should
know whether artificial lowering of an abnormally high
heart rate (resting and non-resting) will aid primary and sec-
ondary prevention of coronary heart disease and, thus,
decrease its related mortality. Exercise is a well-known
intervention to lower RHR and increase survival. In the
long term, endurance training increases parasympathetic
activity and decreases sympathetic activity in the human
heart at rest. These two training-induced autonomic
effects, coupled with a possible reduction in intrinsic
heart rate, decrease RHR. Interestingly, regular exercise
training and RHR were strongly correlated with late survival
in elderly patients from the French IPC-Study.12

In CAD patients, reducing heart rate is a generally accepted
treatment modality; it directly minimizes the myocardial
oxygen demand and enhances its supply by improving suben-
docardial blood flow.54,55 Moreover, it may reduce the risk of
plaque rupture56 and decrease the risk of sudden cardiac
death after myocardial infarction. In both animal and
human, the anti-ischaemic benefits of beta-blockade can
be abolished by atrial pacing,57,58 which argues for an import-
ant role of heart rate control in the positive effects of this
class of drug. In addition, the favourable effects of
beta-blockers (BB) on mortality in CAD patients are at least
partially mediated to their HR-lowering effects.59–61

In patients with chronic heart failure (CHF), rate-lowering
therapies have shown to reduce both the morbidity (risk of

hospitalization) and the mortality.62–66 Multivariate analysis
of CIBIS II showed that under beta-blockade, larger the
discard of RHR was associated with, higher the survival
and freedom of hospital admissions.67

Should we prescribe HR-lowering drugs to
patients with high RHR, but without known
CAD or CHF?

In the general population, a pulse rate higher than 90 b.p.m.
may be harmful. So, should we treat it with the same
strength as other components of the metabolic syndrome
(hypercholesterolemia, arterial hypertension, or obesity)?
To date, no human study has been performed to demon-
strate the efficacy, the risk-benefit ratio, or even less, the
cost-effectiveness of heart-rate lowering treatment in
patients without cardiac disorders. Few evidences exist,
however, based on animal studies. In monkeys, heart rate
reduction by sinoatrial node ablation68,69 or administration
of propranolol70 is associated with a noticeable reduction
of atherogenesis. In mice, administration of digoxin slowed
the heart rate and prolonged the life span.71

In humans, how should we currently manage high RHR?
Since it could unmask hypoxaemia, anaemia, alcoholism,
chronic stress or depression, or be the consequence of
already prescribed drugs, a careful investigation should be
done to exclude and, if necessary, treat secondary causes.
Furthermore, lifestyle changes should be recommended
with special emphasize on preventing anxiety, stress and
toxics (caffeine, alcohol, nicotine, amphetamines, or
cocaine), screen for drugs (hydralazine, thyroid hormones,
catecholamines, aminophylline, etc.), and prescribe exer-
cise or rational behaviour therapies. For instance, one
should consider that pet ownership can lower RHR.72

Besides the BB, some of the calcium channel blockers (CCB),
such as diltiazem and verapamil (non-dihydropyridines), also
potently reduce the heart rate. BB reduce both RHR and the
response of the heart rate to exercise. The reduction of
heart rate by BB is accompanied by a decrease in peripheral
blood pressure with consequently reduced cardiac oxygen
consumption and a longer diastolic filling time allowing for
increased coronary perfusion. BB have consistently been
shown to reduce cardiovascular mortality, sudden cardiac
death, and reinfarction in patients recovering from previous
infarction61,73,74 (Figure 4). In common with BB, the CCB of
the non-dihydropyridine type also lower the heart rate and
blood pressure as well as the risk of reinfarction. In
principle, both classes of drugs operate by lowering the
intracellular calcium signalling (although by different
mechanisms), reduce conductance velocity and cardiac
inotropism.73,74 Since it is known that the heart rate is
primarily determined by the hyperpolarization-activated
cation current, termed If (f stands for funny because of its
unusual activation by hyperpolarization at voltages in the
diastolic range), Ih or Iq, the search for drugs that reduce
the heart rate without the aforementioned unwanted
effects of BB or CCB is going on. In the heart, the pacemaker
current is carried by a family of hyperpolarization-
activated, cyclic adenosine monophosphate (cAMP)-
mediated cation channels (HCN1–HCN4, cloned in the late
1990s) in the sinoatrial node.75 HCN4 is the main isoform
in the heart with smaller amounts of HCN1 and HCN2.
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These channels carry either an inward current (mainly Naþ)
at strongly negative (280 mV) or an outward current
(mainly Kþ) at mildly positive voltage (þ5 mV) inducing
membrane depolarization following the action potential.
By mediation of cAMP their activity is subject to beta-
adrenergic regulation. Mutations in HCN4 have recently
been found in patients with idiopathic sinus node dysfunc-
tion.76 Of several drugs tested, ivabradine proved to be
the most specific without almost any noticeable side
effects. Ivabradine specifically inhibits the HCN4 channel
in the open state displaying pronounced ‘use depen-
dence’.77 This latter property supports its therapeutic
effectiveness, since with higher heart rate more channels
are open and might, thus, become inhibited by the drug.
Ivabradine is presently in phase-III clinical tests and may
soon become available.
In conclusion, because current evidences are enough to

demonstrate its efficacy, drugs that lower heart rate
should be prescribed in patients with myocardial infarction,
diabetes mellitus, and/or heart failure. In hypertensive
patients, an approved consensus has been published
recently by Palatini et al.7 This publication presents a com-
prehensive review of clinical significance and prognosis of
RHR as independent cardiovascular risk factor, especially
in subsets of patients, such as women and elderly, its
measurement and its management.
Lastly and because, to date, it is not known whether any

drug-induced diminution of heart rate will efficiently extend
life expectancy, heart rate reduction should be left to

physician’s discretion, hoping that large-scale, multicentre,
double-blinded, placebo-controlled clinical studies will
address this issue.

Conflict of interest: none declared.
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Incidental finding of a ruptured thin-cap fibroatheroma by optical coherence tomography
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A 61-year-old male with stable exertional angina presented for
elective percutaneous treatment of a left anterior descending
(LAD) coronary artery stenosis. Following successful stent deploy-
ment, [left coronary angiogram with position of stent demarcated
by the two white arrows (Panel A)], optical coherence tomography
(OCT) imaging of the LAD artery was performed (LightLab Imaging
Inc., Westford, MA, USA). OCT imaging in a region free of signifi-
cant angiographic stenosis (Panel A, black arrow) revealed a
thin-cap fibroatheroma with a ruptured fibrous cap. Panel B
shows an OCT image of the plaque with a thin fibrous cap (arrow)
measured at 40 mm overlying a central lipid core (L). Another
magnified image of the plaque in Panel D clearly illustrates
rupture of the thin fibrous cap (arrow). Intravascular ultrasound
imaging at the same position (Panel C) demonstrates the plaque
(P), but is unable to distinguish any further morphological detail.

High heart rate 2393

D
ow

nloaded from
 https://academ

ic.oup.com
/eurheartj/article/27/20/2387/2887295 by guest on 13 M

arch 2024


