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Aims Results from clinical trials suggest that cardiac function after acute myocardial infarction (AMI) can be enhanced by an
intracoronary infusion of autologous unselected nucleated bone marrow cells (BMCs). Release of paracrine factors
has been proposed as a mechanism for these therapeutic effects; however, this hypothesis has not been tested in
humans.

Methods
and results

BMCs and peripheral blood leucocytes (PBLs) were obtained from 15 patients with AMI and cultured in serum-free
medium to obtain conditioned supernatants (SN). BMC-SN stimulated human coronary artery endothelial cell pro-
liferation, migration, and tube formation, and induced cell sprouting in a mouse aortic ring assay. Moreover, BMC-SN
protected rat cardiomyocytes from cell death induced by simulated ischaemia or ischaemia followed by reperfusion.
While PBL-SN promoted similar effects on endothelial cells and cardiomyocytes, BMC-SN and PBL-SN in combi-
nation promoted synergistic effects. As shown by ProteinChip and GeneChip array analyses (each performed in
triplicate), BMCs and PBLs expressed distinct patterns of pro-angiogenic and cytoprotective secreted factors.

Conclusion Our data support the paracrine hypothesis and suggest that characterization of the BMC secretome may lead to an
identification of factors with therapeutic potential after AMI.
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Introduction
Rapid reperfusion of the infarct-related artery is of critical import-
ance to limit infarct size in patients with acute myocardial infarction
(AMI).1 Unfortunately, myocardial necrosis starts early after coron-
ary occlusion, usually before reperfusion can be achieved. The
resulting loss of viable myocardium initiates an inflammatory
process that leads to a replacement of the infarcted area with
scar tissue, and sets the stage for systolic dysfunction and pro-
gressive ventricular remodelling in many patients.2 Results from
randomized-controlled clinical trials suggest that the recovery of
left ventricular systolic function in patients after AMI can be
enhanced by an infusion of autologous unselected nucleated bone
marrow cells (BMCs) into the reperfused coronary artery.3–5

While these studies have already triggered additional clinical
trials that are currently assessing procedural issues of cell
therapy (e.g. cell dosage and timing of cell transfer),6,7 little is
known about the mechanisms of how unselected BMCs may
improve systolic function after AMI. Differentiation of haemato-
poietic stem cells and endothelial precursor cells into cardiomyo-
cytes and endothelial cells has been offered as an explanation,8,9

but the quantitative importance of cell incorporation has been
challenged.10–13 Animal studies employing specific stem and pro-
genitor cell populations suggest that paracrine signalling may be
an additional or alternative mechanism for the therapeutic effects
of cell transfer after tissue ischaemia.13 –16

The significance of these experimental findings with regard to
unselected BMCs that are currently applied in clinical trials is
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uncertain. In the present study, we assessed the secretory capacity
of unselected BMCs in patients undergoing BMC therapy after
AMI. Our data show that BMCs deliver a distinct cocktail of
growth factors and cytokines into infarcted myocardium and
indicate that characterization of the BMC secretome may lead to
the identification of factors with therapeutic potential after AMI.

Methods

Patients and bone marrow cell preparation
The present study is a subinvestigation of the ongoing BOne marrOw
transfer to enhance ST-elevation infarct regeneration (BOOST) 2
trial. BOOST 2 is a randomized, placebo-controlled, multicentre trial
of intracoronary BMC transfer in patients with a first ST-segment
elevation AMI (see http://www.controlled-trials.com/ISRCTN174574
07 for the study protocol). Unselected nucleated BMCs were pre-
pared using the same method that was used in the BOOST trial.3 In
brief, bone marrow was aspirated in the late afternoon from the pos-
terior iliac crest during a brief general anaesthesia with midazolam and
etomidate, stored at 48C overnight, and processed the next morning
by 4% gelatine-polysuccinate density gradient sedimentation according
to current GMP regulations at Cytonet Hannover. From each patient,
an aliquot of the final BMC product, corresponding to 20 mL of the
initial bone marrow aspirate, and 25 mL of heparinized venous blood
were available for research purposes. BMCs and blood samples from
15 patients were used in the present study. Per protocol, BMCs are
irradiated prior to intracoronary transfer in one-half of the patients
in the BOOST 2 trial. For the present investigation, only non-irradiated
cells were used. On average, 2.6+0.6�108 BMCs were obtained
from each patient and taken to the lab in a transfer box at �48C.
Erythrocytes were depleted from BMCs and blood samples by
ammonium chloride lysis. Nucleated BMCs and peripheral blood
leucocytes (PBLs) were then snap-frozen for later RNA isolation
or cultured for 24 h at 378C in serum-free DMEM in 6-well plates
(5 � 106 cells in 2 mL per well) to obtain conditioned supernatants
(SN). SN from patients 1–6 were pooled and used for in vitro assays
(five males and one female). SN and RNA samples from patients
7–15 were used for ProteinChip and GeneChip arrays (all males).
The study was approved by the ethics committee of Hannover
Medical School. All patients provided written informed consent.

Angiogenesis assays
Human coronary artery endothelial cells were purchased from
Cambrex (Walkersville, MD, USA) and grown in endothelial cell
growth medium MCDB131 (Invitrogen, Paisley, UK) supplemented
with 10% foetal calf serum (Invitrogen) in 0.1% gelatine-coated T75
flasks. Cells from passages 3 to 7 were used. Prior to their use in func-
tional assays, endothelial cells were cultured overnight in MCDB131
containing 0.5% foetal calf serum. Endothelial cell proliferation was
measured by bromodeoxyuridine incorporation in 96-well plates
(5 � 103 cells per well). Endothelial cell migration was assessed in
Boyden chambers with 8 mm pore size (Costar, Cambridge, MA,
USA); 1 � 105 cells were added to the transwell insert. The number
of migrated cells on the lower surface of the filter was counted after
24 h. Endothelial cell tube formation was assayed in 24-well plates
(3 � 104 cells per well) coated with growth factor-reduced Matrigel
(BD Biosciences, Bedford, MA, USA); tube formation was quantified
after 6 h by phase contrast microscopy.17 Vascular cell sprouting was
assessed in an aortic ring assay, as described.18 In brief, mouse aortic
rings were embedded in growth factor-reduced Matrigel in 24-well

plates, and cultured for up to 2 weeks in MCDB131 with 1% foetal
calf serum. Cellular outgrowth was assessed by phase contrast
microscopy and expressed as maximum sprout length.18 Endothelial
cells and aortic rings were stimulated with BMC-SN and/or PBL-SN
at different concentrations. Negative controls were stimulated with
unconditioned serum-free DMEM; positive controls were stimulated
with vascular endothelial growth factor (VEGF) (10 ng/mL) or fibro-
blast growth factor (FGF) 2 (100 ng/mL).

Cardiomyocyte cell death assays
Ventricular cardiomyocytes were isolated from 1 to 3 day old
Sprague–Dawley rats by Percoll density gradient centrifugation.19

Cells were plated in gelatin-coated culture dishes in DMEM/medium
199 (4:1), supplemented with 10% horse serum, 5% foetal calf
serum, glutamine, and antibiotics. The next morning, cells were
switched to DMEM/medium 199 supplemented only with glutamine
and antibiotics (maintenance medium). Cells were exposed to simu-
lated ischaemia (4 h), or simulated ischaemia (3 h) followed by reper-
fusion (1 h), as described.20,21 In brief, cells were switched from
maintenance medium to a buffer containing (in mmol/L) 137 NaCl,
12 KCl, 0.5 MgCl2, 0.9 CaCl2, 4 HEPES, 10 2-deoxy-glucose, and 20
sodium lactate (pH 6.2), and were incubated at 378C in a hypoxia
chamber (Modular Incubator Chamber-101, Billups-Rothenberg)
flushed with 5% CO2 and 95% N2 (simulated ischaemia). Control
cells were cultured in a buffer containing (in mmol/L) 137 NaCl, 3.8
KCl, 0.5 MgCl2, 0.9 CaCl2, 4 HEPES, 10 glucose, and 20 pyruvate
(pH 7.4), and incubated at 378C in an atmosphere containing 5%
CO2 and 95% room air. After various time intervals, cells were
switched back to maintenance medium and kept in 5% CO2 and
95% room air at 378C (simulated reperfusion). Cardiomyocyte necro-
sis was assessed by ethidium homodimer III (EthIII) staining and
Hoechst 33258 counter-staining. EthIII-positive cells were quantified
by fluorescence microscopy.22 Apoptotic cell death was assessed by
in situ TdT-mediated dUTP nick end-labelling (TUNEL) using the
ApopTag fluorescein apoptosis detection kit from Millipore (Billerica,
MA, USA) and DAPI counter-staining. The number of TUNEL-positive
nuclei displaying condensed nuclear chromatin was determined by
fluorescence microscopy.21 As an additional measure of apoptotic
cell death, we assessed the formation of histone-associated DNA
fragments by the Cell Death Detection ELISA from Roche (Basel,
Switzerland).21 Cardiomyocytes were stimulated with BMC-SN and/or
PBL-SN at different concentrations. Negative controls were stimulated
with unconditioned serum-free DMEM; positive controls were stimu-
lated with growth differentiation factor 15 (GDF15) (20 ng/mL).

ProteinChip array
Human Cytokine ProteinChip Array C Series 2000 (Ray Biotech,
Norcross, GA, USA) membranes targeting 174 secreted factors
were incubated with 1 mL of BMC-SN or PBL-SN at room tempera-
ture for 2 h, washed, and then sequentially incubated with biotinylated
antibodies, and horseradish peroxidase-conjugated strepavidin and
detection solution according to the manufacturer’s instructions.

GeneChip array
Total RNA was isolated from BMCs and PBLs using the RNeasy Kit
from Qiagen (Hilden, Germany). RNA was biotinylated and hybridized
to Affymetrix Human Genome U133 plus 2.0 GeneChip Arrays which
allow analysis of 54 675 transcripts. All data were exported into Gene-
Spring 7.2 (Silicon Genetics, Foster City, CA, USA). Genes that were
differentially expressed at least two-fold were further analysed using
the GeneOntology freeware (http://www.geneontology.org). Genes
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were filtered to include genes annotated with the term ‘extracellular’
and to exclude genes annotated with the terms ‘integral to membrane’,
‘nucleus’, ‘cytoplasm’, or ‘intracellular’.

Quantitative PCR
After reverse transcription (Superscript II, Invitrogen), QPCR was per-
formed using gene-specific oligonucleotide primers from Biomol
(Hamburg, Germany), and the Brilliant SideStep SYBR Green QPCR
Master Mix and Mx4000 Multiplex QPCR System from Stratagene
(Amsterdam, The Netherlands). Expression was normalized to
GAPDH mRNA expression levels.

Enzyme-linked immunosorbent assay
The concentrations of bone morphogenetic protein 2 (BMP2), dick-
kopf homolog 1 (DKK1), FGF9, and VEGF were measured by ELISA
in BMC-SN and PBL-SN using ELISA kits from R&D Systems (Wiesba-
den, Germany) and a plate reader from BioTek (Bad Friedrichshall,
Germany).

Statistical analyses
Data are presented as mean+ SEM. Differences between groups were
analysed by one-way ANOVA followed by Student–Newman–Keuls
test. A two-tailed P-value ,0.05 was considered to indicate statistical
significance.

Results

Patient population
Patients (14 males and one female) had a mean age of 53+3
years. Thirteen patients presented with an anterior or lateral
AMI and two patients with an inferior AMI. Coronary angiography,
angioplasty, and stent implantation were performed 5.9+ 0.8 h
after symptom onset. The mean time from coronary intervention
to BMC harvest was 6.5+0.4 days. Patient characteristics are
shown in Table 1.

Conditioned bone marrow cell
supernatants promote pro-angiogenic
effects
BMC-SN stimulated human coronary artery endothelial cell pro-
liferation (Figure 1A), migration (Figure 1B), and tube formation
(Figure 1C) in a dose-dependent manner. Moreover, BMC-SN
stimulated cell sprouting from cultured aortic rings (Figure 1D).
The pro-angiogenic effects achieved with BMC-SN in these
assays were comparable with the effects observed after stimulation
with optimum concentrations of the pro-angiogenic factors VEGF
or FGF2 (VEGF and FGF2 dose-response curves were obtained in
pilot experiments). PBL-SN promoted similar dose-dependent
effects on endothelial cell proliferation, migration, and tube for-
mation, and aortic ring cell sprouting (Figure 1A–D). Notably,
BMC-SN and PBL-SN in combination promoted synergistic
effects as shown in the cell migration and aortic ring assays
(Figure 1B and D) (in panel B, BMC-SN combined with PBL-SN,
each at a dilution of 0.5 � 1021, promoted greater effects when
compared with BMC-SN or PBL-SN used separately at a dilution
of 1 � 1021; in panel D, BMC-SN combined with PBL-SN, each
at a dilution of 1.5 � 1022, promoted greater effects when

compared with BMC-SN or PBL-SN applied separately at a dilution
of 3 � 1022).

Conditioned bone marrow cell
supernatants protect cardiomyocytes
from cell death
Four hours of simulated ischaemia induced cardiomyocyte necrosis
as shown by EthIII staining (Figure 2A and B). Consistent with a pre-
vious study from our group,21 the same treatment did not increase
apoptotic cell death, as indicated by TUNEL/Hoechst staining and
histone ELISA (data not shown). Simulated ischaemia for 3 h fol-
lowed by reperfusion for 1 h, however, strongly induced cardio-
myocyte apoptosis (Figure 2C–E). BMC-SN dose-dependently
protected cardiomyocytes from necrosis induced by simulated
ischaemia, and from apoptosis induced by simulated ischaemia fol-
lowed by reperfusion (Figure 2A–E). The effects were somewhat
less pronounced when compared with an optimum dose of
GDF15 which was used as a positive control.21 While PBL-SN pro-
moted similar dose-dependent cytoprotective effects in cultured
cardiomyocytes (Figure 2A, C, and E), BMC-SN and PBL-SN in com-
bination promoted synergistic effects and provided enhanced pro-
tection against cardiomyocyte necrosis and apoptosis (Figure 2A
and C ) (BMC-SN combined with PBL-SN, each at a dilution of
0.5 � 1022, promoted greater effects when compared with
BMC-SN or PBL-SN used separately at a dilution of 1 � 1022).
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Table 1 Patient characteristics

Demographics n ¼ 15

Age (years) 53+3

Male gender, n 14

Myocardial infarct

Delay time (h) 5.9+0.8

Infarct-related artery

LAD n ¼ 12

RCA n ¼ 2

LCX n ¼ 1

Maximum CK (U/L) 3762+444

Time from PCI to BMC harvest (days) 6.5+0.4

Cardiovascular risk factors

Hypertension, n 5

Hypercholesterolemia, n 6

Diabetes, n 3

Current smoking, n 6

Medication at the time of BMC harvest

Aspirin and clopidogrel, n 15

b-Blocker, n 15

ACE inhibitor/AT1 blocker, n 15

Statin, n 15

Data are presented as numbers, n or mean (+SEM). Delay time refers to the time
from symptom onset to percutaneous coronary intervention (PCI). LAD, left
anterior descending coronary artery; LCX, left circumflex coronary artery; RCA,
right coronary artery; CK, creatine kinase; BMC, bone marrow cell.
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Bone marrow cells and peripheral blood
leucocytes express quantitatively distinct
sets of secreted factors
Postulating that secreted factors contribute to the therapeutic
effects of BMCs after intracoronary transfer, we reasoned that
factors that may be important in this regard should be expressed
more strongly in BMCs when compared with PBLs that are con-
stantly passing through the coronary vascular bed. We therefore
decided to search for and focus on secreted factors that are differ-
entially expressed by BMCs vs. PBLs.

ProteinChip arrays were used to identify factors secreted from
BMCs and PBLs in patients after AMI. Secreted factors that were
differentially expressed at least two-fold in BMC-SN vs. PBL-SN

in three independent array analyses (each investigating pooled
SN from three patients) are shown in Supplementary material
online, Table S1. Out of 174 secreted factors represented on the
ProteinChip array, 25 factors were present in higher concen-
trations in BMC-SN, and 10 factors were found in higher concen-
trations in PBL-SN. Factors secreted more strongly from BMCs
included angiogenin and VEGF, hepatocyte growth factor (HGF),
insulin-like growth factor 1 (IGF1), interleukin (IL) 10, chemokine
(C-C motif) ligand 2 (CCL2), CCL23, and CCL24, chemokine
(C-X-C motif) ligand 6 (CXCL6), CXCL12, and CXCL13, and
FGF9. Factors secreted more strongly from PBLs included placen-
tal growth factor (PlGF) and IL11.

Affymetrix GeneChip arrays were used to screen for secreted
factors expressed by BMCs and PBLs on a genome-wide scale.

Figure 1 Pro-angiogenic effects of bone marrow cell supernatants. Effects of conditioned bone marrow cell supernatants (BMC-SN) and
conditioned peripheral blood leucocyte supernatants (PBL-SN) on human coronary artery endothelial cell proliferation (A), migration (B),
and tube formation (C), and on cell sprouting in the mouse aortic ring assay (D). BMC-SN and PBL-SN dilution factors are indicated. VEGF
(10 ng/mL), and FGF2 (100 ng/mL) were used as positive controls. Representative phase contrast microscopy images are shown in (C and
D). Data are from n ¼ 3–6 independent experiments; *P , 0.05, **P , 0.01 vs. control (Con); #P , 0.05, ##P , 0.01 vs. BMC-SN or
PBL-SN alone; §§P , 0.01 BMC-SN, PBL-SN, and VEGF vs. control; §§§P , 0.001 (BMC-SNþPBL-SN) vs. BMC-SN, PBL-SN, and VEGF.
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Factors that were differentially expressed on the mRNA level at
least two-fold in three independent array analyses (each investi-
gating pooled RNA from 3 patients) are listed in Supplementary
material online, Table S2. Overall, 125 secreted factors were
expressed more strongly by BMCs, whereas 70 secreted factors
were expressed more strongly by PBLs. Eight BMC-overexpressed
factors were chosen for QPCR investigation. Stronger expression

in BMCs when compared with PBLs was confirmed for all eight
factors (Figure 3A), thus supporting the validity of the GeneChip
array data. Protein concentrations of four of these factors were
also measured by ELISA in BMC-SN and PBL-SN (BMP2, DKK1,
FGF9, VEGF). All of these factors were detectable in significantly
higher concentrations in BMC-SN when compared with PBL-SN
(Figure 3B).

Figure 2 Cytoprotective effects of bone marrow cell supernatants. Effects of conditioned bone marrow cell supernatants (BMC-SN) and
conditioned peripheral blood leucocyte supernatants (PBL-SN) on rat ventricular cardiomyocyte death. Cells were exposed to 4 h of simulated
ischaemia (A and B) or to 3 h of simulated ischaemia followed by 1 h of reperfusion (I/R, panels C–E). BMC-SN and PBL-SN dilution factors are
indicated [1022 in (B) and (D)]. Necrotic cell death was assessed by EthIII staining (A and B). Apoptotic cell death was assessed by TUNEL (C
and D) and by histone ELISA (E). Representative EthIII/Hoechst 33258 and TUNEL/DAPI stainings are shown (B and D). Growth differentiation
factor 15 (GDF15, 20 ng/mL) was used as a positive control. Data are from n ¼ 3–6 independent experiments; *P , 0.05, **P , 0.01,
***P , 0.001 vs. ischaemia or I/R alone; #P , 0.05 vs. BMC-SN or PBL-SN alone.
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Discussion
The mechanisms whereby unselected nucleated BMCs improve left
ventricular systolic function in patients with AMI are poorly under-
stood and difficult to explore in a clinical setting. The present study
shows that BMCs, which are currently used in cell therapy trials in
patients after AMI, secrete pro-angiogenic and cytoprotective
growth factors and cytokines, and can promote angiogenesis and
cardiomyocyte survival via paracrine effects.

Experimental studies indicate that enhanced angiogenesis and
cytoprotection may both contribute to the effects of stem and
progenitor cell therapy after myocardial infarction. Increased
angiogenesis has been postulated to improve infarct healing and
energy metabolism in the infarct border zone.23–26 Cytoprotective
effects may salvage cardiomyocytes at risk and lead to a reduction
in infarct size.15,27,28 In one clinical trial, improvements in left ven-
tricular systolic function in AMI patients undergoing intracoronary
BMC transfer have been found to be associated with improve-
ments in microvascular function and tissue perfusion in the
infarcted area.29 Other clinical data indicate that BMC transfer,
when applied early after coronary reperfusion, may lead to a
reduction in myocardial infarct size.30 Our data indicate that
such effects could be related to paracrine signalling between trans-
planted BMCs and resident endothelial cells and cardiomyocytes.
In line with this conclusion, conditioned BMC-SN obtained from
patients with advanced coronary artery disease and refractory
angina have been found to contain VEGF and CCL2 and to
stimulate the proliferation of human umbilical vein endothelial
cells in vitro.31,32

BMC-mediated paracrine effects suggest that a systematic analy-
sis of the BMC secretome may lead to the identification of (new)
cardioactive factors. Considering (i) that PBLs are constantly
passing through the coronary vascular bed of a reperfused

infarct, (ii) that PBLs have previously been found to express
several cytokines and growth factors,33 and (iii) that conditioned
PBL-SN promoted similar pro-angiogenic and cytoprotective
effects in our study, we reasoned that cytokines and growth
factors that are more strongly expressed by BMCs when compared
with PBLs may be especially important for any therapeutic effects
of BMC transfer. As shown by ProteinChip and GeneChip array
analyses, BMCs and PBLs expressed quantitatively distinct patterns
of pro-angiogenic (e.g. angiogenin, VEGF, and PlGF)34– 36 and cyto-
protective paracrine factors (e.g. IGF1 and IL11).37,38 Angiogenin,
VEGF, and IGF1 were secreted more strongly from BMCs,
whereas PlGF and IL11 were secreted more strongly from PBLs.
Differential expression of secreted factors provides a rationale
why BMC-SN and PBL-SN promoted synergistic, and not only
additive effects in our assays.

While our study was focused on pro-angiogenic and cytoprotec-
tive effects of BMC secreted factors, additional downstream effects
are possible. IGF1 and HGF, for example, have been shown to act
on cardiac resident stem and progenitor cells.39 IGF1 also provides
survival signals to transplanted cells themselves,40 and modulates
the inflammatory response.37,41 CXCL12 (stromal cell-derived
factor 1) can promote tissue neovascularization by recruiting circu-
lating progenitor cells.42 BMP2 and the canonical Wnt signalling
inhibitor DKK1 may enhance cardiomyocyte survival and wound
healing after myocardial infarction.43,44 As shown in our study, all
of these factors were preferentially secreted from BMCs when
compared with PBLs; in addition, several chemokines and the anti-
inflammatory cytokine IL10 were secreted more strongly from
BMCs, suggesting that BMCs may influence the inflammatory
response after AMI.

Some limitations of the present study need to be acknowledged.
First, little is known about which BMC subpopulations are retained
in the infarcted area after intracoronary delivery in patients.

Figure 3 Validation of bone marrow cell-overexpressed factors. (A) Eight secreted factors that were preferentially expressed by bone
marrow cells (BMCs) when compared with peripheral blood leucocytes (PBLs) according to the GeneChip arrays were chosen for QPCR vali-
dation. Expression levels in BMCs and PBLs were measured in six patients previously included in the GeneChip analyses and three additional
patients. Data are presented as log2 transformed BMC/PBL expression ratios. (B) Concentrations of four secreted factors were determined by
ELISA in BMC- and PBL-conditioned supernatants in three patients that were included in the GeneChip analyses and three additional patients.
Means are indicated by horizontal bars. *P , 0.05, **P , 0.01.
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We, therefore, focused on the unselected BMC preparation that
has been used in the BOOST trial and that is currently used in
BOOST 2. We have previously shown that CD34þ cells are
retained more efficiently when compared with unselected BMCs
after intracoronary infusion in patients with AMI.45 Accordingly,
patterns of secreted factors expressed by cells that undergo intra-
coronary infusion and cells that are retained in the infarcted area
may be somewhat different. Second, it is not known which
secreted factors are produced by BMCs in the heart after intracor-
onary transfer. As recently observed after endothelial progenitor
cell transplantation in a mouse model of AMI, transplanted cells
may stimulate resident cells to produce additional secreted
factors.28 Third, secretome analyses were performed only in
male patients, and we did not assess potential gender differences
in the secretory capacity of BMCs and PBLs.

In conclusion, our study supports the paracrine hypothesis and
indicates that BMCs deliver a distinct panel of secreted factors
into the infarcted myocardium. Identification of BMC secreted car-
dioactive factors may ultimately lead to new therapeutic strategies
to positively influence infarct healing and cardiac remodelling.

Supplementary material
Supplementary Material is available at European Heart Journal
Online.
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